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Introduction

The upper troposphere/lower stratosphere (UTLS) composition around the sub-tropical
jets (STJ) is highly variable. At least a portion of regional tropospheric ozone variability
around the STJs have previously been attributed to El Niflo Southern Oscillation (ENSO)
and Quasi-Biennial Oscillation (QBO) induced changes in stratosphere troposphere
exchange (STE) around the jets. However, the jets are highly variable in their location,
including an influence from ENSO (see Manney et al. poster #16). In addition, large
horizontal and vertical gradients exist across the jets. Using a jet-based coordinate
system can reduce much of the apparent composition variability associated with the jet
movement, sharpen the gradients, and highlight distinct air masses. In this study, we use
Goddard Earth Observing System Data Assimilation System (GEOS DAS) analyses of OMI
and MLS ozone data mapped to a STJ coordinate to examine the influence of ENSO and
QBO on global and regional variability of UTLS ozone and STE associated with
tropopause-folding. The STJ coordinate system maps the ozone analyses relative to the
horizontal and vertical distance from the jet cores in the Northern and Southern
Hemispheres. Multiple linear regression is used to give the spatial distribution of the
variance and sensitivity of UTLS ozone that is uniquely attributable to the QBO and ENSO
time series relative to the STJ in both hemispheres.
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ENSO Impact on Tropospheric Column Ozone (TCO)
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" Influence of ENSO on subtropical
TCO and STJ evident, particularly
in the Pacific.

= ENSO influence in the subtropics
suggests impact on stratosphere-

troposphere exchange associated
with the STJ.
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(Figures in this panel from Olsen et al., 2016)
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Plotted as change in mixing ratio (ppb) per * one standard
deviation of the ENSO or QBO time series.
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Data and Methods

GOES-5 Data Assimilation

" We assimilate total column ozone from OMI, stratospheric profiles from MLS, and
meteorological data into GEOS-5 spanning 2005 through 2013.

® 2°x2.5° Lat-Lon for this analysis. Here, we use monthly means.

® Ziemke et al. (2014) and Wargan et al. (2015) evaluated the analyses tropospheric
ozone. Olsen et al. (2016) used the analyses to examine the spatially-resolved
tropospheric column ozone (TCO) response to ENSO.

STJ Coordinate

® Ozone analyses are placed into coordinate system using 0.5 km vertical and 2° latitude
resolution.

" Negative coordinate values indicate distance below and degrees south of jet cores.

Multiple Linear Regression With ENSO and QBO Indices

" Nifio 3.4 Index

® QBO: 50 hPa wind speed and direction.

® We use monthly mean, deseasonalized time series of ENSO, QBO, and ozone.

Jet Characterization (See also Manney et al. poster #16)

GEOS OM5E72, 20130106, 12UT, 100.31°E
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Tropospheric Jet Maxima, Extent

After Manney et al. 2011

" Jet cores: windspeed maxima greater than 40m/s

® Jet region edges: windspeed 30m/s

® Subtropical jet (STJ): Lowest latitude westerly jet with tropopause altitude > 13km at
its equatorward edge and a tropopause drop >2.5km between equatorward and
poleward edges
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Cross-hatched where not significantly different from zero

" Globally, the explained variance by the QBO is much less than ENSO around the STJ.

" Hints at impact on stratosphere to troposphere transport (greatest in SH) but is very weak.

" The attribution between the QBO and ENSO is reasonably separated with generally less
than 5% of the explained variance being “confounded”.
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Region of greatest impact on folding/STE by
both ENSO and QBO.

Up to ~20% of the variance is explained
around the tropopause on the poleward side
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Summary

Globally, ENSO dominates the ozone response around the ST) compared to the QBO. The impact is greatest in
the midlatitude lower stratosphere and tropical upper troposphere.

There is evidence of a positive correlation of folding/STE to ENSO on the global scale but both the sensitivity and
explained variance is small.

The influence of both ENSO and QBO is greater when considering smaller regions, although the QBO influence
remains small below the altitude of the STJ.

Over much of the area around the STJ, the ENSO and QBO influence can greatly cancel or strongly reinforce,
depending on their relative phases.

Results are useful for comparing modeled QBO and ENSO influences on ozone variability that removes the first-
order impact of differences due to the location of the STIs.




